# STAAR Algebra 1 EOC 

 Reporting 1 Assessment ItemsIncludes 25 Multiple Choice and 1 Open Ended Questions

- Domain and Range of Quadratic Functions
- Graphing Quadratic Functions and Identifying Key Features
- Quadratic Transformations
- Solving Quadratic Equations
- Writing Quadratic Equations
- Describing Relationships Between Linear Factors and Zeros
- Writing Quadratic Functions to Fit Data


## Algebra 1

1. Which graph shows a function with a range of all real numbers greater or equal to -3 ?
A

C

B

D

2. Which statement about the function $y=-x^{2}-2 x-1$ is true?

A The range is the set of all real numbers.
B The domain is the set of all real numbers.
C The range is the set of all real numbers less than -1.
D The domain is the set of all real numbers less than -1 .
3. A quadratic function has a vertex of $(-2,5)$ and passes through the points $(-4,-3)$ and $(1,-13)$. What is the range of this function?

A $y \leq 5$
B $y<5$
C $y \geq 5$
D $\quad y>5$
4. The graph shows the height of a brick in feet after it is dropped off the edge of a building.


What is the domain of the function for this situation?
A $0 \leq x \leq 250$
B $\quad x \leq 250$
C $\quad 0 \leq x \leq 4.5$
D $\quad x \leq 4.5$
5. Which graph shows a minimum value of 4 ?
A


C

D

6. What is the vertex of the graph $y=2 x^{2}-6 x+1$ ?

A $\left(\frac{3}{2},-\frac{7}{2}\right)$
B $(0,1)$
C $\left(\frac{1}{5}, \frac{14}{5}\right)$
D $\left(-\frac{3}{2}, \frac{7}{2}\right)$
7. Which graph shows a function with zeros of $\frac{1}{3}$ and 5 ?
A

C

B

D

8. A town launches fireworks from a boat on the river to celebrate New Year's Day. The height of the fireworks above ground in meters can be represented by the function $f(t)=-4.9 t^{2}+39.2 t+1.6$. If $t$ represents the time in seconds, what is the maximum height the fireworks will reach?

Record your answer and fill in the bubbles on your answer document.

|  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\oplus$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\odot$ | $\bigcirc$ | $\bigcirc$ | $\odot$ |
| $\Theta$ | () | - | ( | (0) | (0) | - | © |
|  | (1) | (1) | (1) | (1) | (1) | (1) | (1) |
|  | (2) | (2) | (2) | (2) | (2) | (2) | (2) |
|  | (3) | (3) | (3) | (3) | (3) | (3) | (3) |
|  | (4) | (4) | (4) | (4) | (4) | (4) | (4) |
|  | (5) | (5) | (5) | (5) | (5) | (5) | (5) |
|  | (6) | (6) | (6) | (6) | (6) | (6) | (6) |
|  | (7) | (7) | (7) | (7) | (7) | (7) | (7) |
|  | (8) | (3) | (8) | (8) | (8) | (8) | (8) |
|  | (2) | (2) | ( $)$ | (2) | (2) | © | (2) |

9. What is the equation for the axis of symmetry for the function graphed below?


A $\quad x=1$
B $x=-2$
C $y=1$
D $y=-2$
10. Quadratic function $f(x)=x^{2}$ is graphed on a coordinate plane. The graph of a new quadratic is formed by changing the vertex to ( 3,0 ). Which function could represent the new quadratic?

A $g(x)=x^{2}-3$
B $g(x)=(x-3)^{2}$
C $g(x)=x^{2}+3$
D $g(x)=(x+3)^{2}$
11. Which two transformations can be used to obtain the graph of $h(x)=-x^{2}-d$ from the function $f(x)=x^{2}$ ?

A A reflection across the $x$-axis followed by a translation up $d$ units.
B A reflection across the $x$-axis followed by a translation down $d$ units.
C A reflection across the $y$-axis followed by a translation to the right $d$ units.
D A reflection across the $y$-axis followed by a translation to the left $d$ units.
12. The graph of $f(x)=x^{2}$ is shown on the grid.


Which statement about the relationship between the graph of $f$ and the graph of $g(x)=\frac{1}{3} x^{2}$ is true?
A The graph of $g$ is $\frac{1}{3}$ units to the left of graph $f$.
B The graph of $g$ is $\frac{1}{3}$ units to the right of graph $f$.
C The graph of $g$ is wider than the graph of $f$.
D The graph of $g$ is narrower than the graph of $f$.
13. How does the graph of $n(x)=\left(\frac{1}{4} x\right)^{2}$ differ from the graph of $m(x)=x^{2}$ ?

A $\quad n(x)$ is compressed horizontally by a factor of 4 .
B $\quad n(x)$ is compressed horizontally by a factor of $\frac{1}{4}$.
C $\quad n(x)$ is stretched horizontally by a factor of 4 .
D $\quad n(x)$ is stretched horizontally by a factor of $\frac{1}{4}$.
14. The graph of $y=x^{2}$ is stretched vertically by a factor of 0.5 . Which of these equations could represent the new graph?

A $y=(0.5 x)^{2}$
B $y=0.5 x^{2}$
C $y=(2 x)^{2}$
D $y=2 x^{2}$
15. Which statement about the quadratic equation below is true?

$$
2 x^{2}-15 x+18=0
$$

A The equation has no real solutions.
B The equation has an infinite number of solutions.
C The equation has $x=\frac{3}{2}$ and $x=6$ as its only solutions.
D The equation has $x=6$ as its only solution.
16. What are the solutions to $(x+2)^{2}-4=30$ ?

A $\quad x=36$
B $\quad x= \pm \sqrt{34}$
C $x=-2 \pm \sqrt{26}$
D $\quad x=-2 \pm \sqrt{34}$
17. The area of a rectangle can be found by using $A=24 w+w^{2}$, where $w$ represents the width. What is the width of the rectangle when the area is 3456 in. ${ }^{2}$ ?

A 36 in.
B $\quad 48$ in.
C 72 in.
D 96 in.
18. What are the solutions to the equation $3 x^{2}=-2 x+4$ ?

A $\quad x=\frac{-2+\sqrt{44}}{6}$ and $x=\frac{-2-\sqrt{44}}{6}$
B $\quad x=\frac{2+\sqrt{44}}{6}$ and $x=\frac{2-\sqrt{44}}{6}$
C $\quad x=\frac{-2+\sqrt{52}}{6}$ and $x=\frac{-2-\sqrt{52}}{6}$
D $\quad x=\frac{2+\sqrt{52}}{6}$ and $x=\frac{2-\sqrt{52}}{6}$
19. Which equation is equivalent to $y=3(x-2)^{2}+5$ ?

A $y=3 x^{2}+12 x+5$
B $y=3 x^{2}+9$
C $y=9 x^{2}-36 x+41$
D $y=3 x^{2}-12 x+17$
20. Which function's graph has a vertex at $(-1,-3)$ and contains the point $(2,15)$ ?

A $y=2 x^{2}-4 x-1$
B $y=2 x^{2}+4 x-1$
C $y=2(x-1)^{2}-3$
D $y=2(x+1)^{2}+3$
21. Which equation can be represented by the graph below?


A $y=x^{2}+15 x+22$
B $\quad y=3 x^{2}+30 x+63$
C $y=x^{2}+10 x+21$
D $y=2 x^{2}+20 x+42$
22. Which function has a graph with $x$-intercepts of $(-2,0)$ and $(7,0)$ ?

A $\quad f(x)=x^{2}-5 x-14$
B $\quad f(x)=x^{2}+5 x-14$
C $\quad f(x)=x^{2}+2 x-7$
D $\quad f(x)=-x^{2}-2 x+7$
23. Which statement about the graph below is true?


A The zeros are -3 and 1, because $y=-(x-3)(x+1)$.
B The zeros are -3 and 1, because $y=-(x+3)(x-1)$.
C The zeros are -1 and 3, because $y=-(x-1)(x+3)$.
D The zeros are -1 and 3, because $y=-(x+1)(x-3)$.
24. The table of values for quadratic function $g$ is shown below.

| $\boldsymbol{x}$ | $\boldsymbol{g}(\boldsymbol{x})$ |
| :---: | :---: |
| -2 | 30 |
| -1 | 16 |
| 0 | 6 |
| 1 | 0 |
| 2 | -2 |
| 3 | 0 |
| 4 | 6 |

Which statement about function $g$ is true?
A The zeros are 3 and 6, because $y=(x-3)(x-6)$.
B The zeros are 1 and 6, because $y=(x-1)(x-6)$.
C The zeros are -1 and -3 , because $y=2(x+1)(x+3)$.
D The zeros are 1 and 3, because $y=2(x-1)(x-3)$.
25. The table shows the height of a football from the ground as it is kicked across a field.

| Time (seconds) | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Height Above <br> Ground (feet) | 5.8 | 50.9 | 74 | 75.1 | 54.2 |

Which function best models the data?
A $y=-10 x^{2}+23 x+2$
B $\quad y=-14.7 x^{2}+1.6 x+5$
C $y=-11 x^{2}+56.1 x+5.8$
D $\quad y=12.1 x^{2}+27.8+0.4$
26. The table shows the height of a diver after $x$ seconds.

| Time (seconds) | 0 | 0.5 | 1 | 1.5 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Height (feet) | 15 | 15.1 | 13.5 | 10.1 | 5 |

Based on this data, which is closest the time the diver will hit the water?
A 2.4 seconds
B 1.8 seconds
C 3.2 seconds
D 1.5 seconds

Reporting Category \#4 Answer Key:

| Texas TEK | Question | Answer |
| :---: | :---: | :---: |
| $A .6$ A $(R)$ | 1 | $D$ |
| $A .6 A(R)$ | 2 | $B$ |
| $A .6 A(R)$ | 3 | $A$ |
| $A .6 A(R)$ | 4 | $C$ |
| $A .7 A(R)$ | 5 | $B$ |
| $A .7 A(R)$ | 6 | $A$ |
| $A .7 A(R)$ | 7 | $A$ |
| $A .7 A(R)$ | 8 | 80 |
| $A .7 A(R)$ | 9 | $B$ |
| $A .7 C(R)$ | 10 | $B$ |
| $A .7 C(R)$ | 11 | $B$ |
| $A .7 C(R)$ | 12 | $C$ |
| $A .7 C(R)$ | 13 | $C$ |
| $A .7 C(R)$ | 14 | $B$ |
| $A .8 A(R)$ | 15 | $C$ |
| $A .8 A(R)$ | 16 | $D$ |
| $A .8 A(R)$ | 17 | $B$ |


| Texas TEK | Question | Answer |
| :---: | :---: | :---: |
| $A .8 A(R)$ | 18 | $C$ |
| $A .6 B(S)$ | 19 | $D$ |
| $A .6 B(S)$ | 20 | $B$ |
| $A .6 C(S)$ | 21 | $D$ |
| $A .6 C(S)$ | 22 | A |
| $A .7 B(S)$ | 23 | $B$ |
| $A .7 B(S)$ | 24 | $D$ |
| $A .8 B(S)$ | 25 | $C$ |
| $A .8 B(S)$ | 26 | $A$ |



Do you like the STAAR Algebra 1 EOC Reporting Category \#4 Assessment Items?

Check out my other STAAR Algebra 1 EOC Reporting Category Assessment Items.

They can be found at my store


