## Practice - Solving Quadratics by Factoring

## Solve the equations below by factoring.

1. $(3 x-2)(4 x-3)=0$
2. $4 x^{2}-6 x+9=6 x$
3. $x^{2}=8 x-16$
4. $12 x^{2}-1=-x$
5. $\frac{x^{2}}{6}+\frac{x}{3}=\frac{5}{2}$
6. $x^{3}-49 x=0$

Given the roots find the quadratic equation.
7. $x:\{-3,7\}$
8. $x:\left\{-\frac{2}{5}, 4\right\}$
9. The table below contains values for $x$ and $y$ in a quadratic function.

| $x$ | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 6 | 0 | -4 | -6 | -6 | -4 | 0 |

Which function best represents the relationship between the quantities in the table?
A $f(x)=x^{2}+x-6$
B $f(x)=-12 x-2$
C $f(x)=x^{2}-x-6$
D $f(x)=-x-2$

## Solve the problems below by factoring.

10. The polynomial $3 x^{2}-11 x-4$ is modeled below using algebraic tiles. What are the solutions to the equation $3 x^{2}-11 x=4$ ?

11. Which equation best represents the graph shown.

A $(x-2)(x+1)=y$
B $(x+2)(x+1)=y$
C $(x+2)(x-1)=y$
D $(x-2)(x-1)=y$

12. If $(2 x-2)(2-x)=0$, what are all the possible values of $x$ ?

A 0 only
B 1 only
C 2 only
D 1 and 2 only
E 0,1 and 2
13. The area of a rectangular floor is described by the equation $w(w-9)=252$ where $w$ is the width of the floor in meters. What is the width of the floor?
14. A group of friends try to keep a beanbag from touching the ground without using their hands. Once the beanbag has been kicked, its height can be modeled by $h=-16 t^{2}+14 t+2$, where $h$ is the height in feet above the ground and $t$ is the time in seconds. Find the time it takes the beanbag to reach the ground.
15. Can you solve $(x-2)(x+3)=5$ by solving $x-2=5$ and $x+3=5$ ? Why or why not?

