Practice – Solving Quadratics by Factoring

Solve the equations below by factoring.

1. (3x-2)(4x-3) = 02. $4x^2 - 6x + 9 = 6x$

3.
$$x^2 = 8x - 16$$
 4. $12x^2 - 1 = -x$

5.
$$\frac{x^2}{6} + \frac{x}{3} = \frac{5}{2}$$
 6. $x^3 - 49x = 0$

Given the roots find the quadratic equation.

7.	<i>x</i> :{-3,7}	8. <i>x</i> :-	$\left\{-\frac{2}{5},4\right\}$,
----	------------------	----------------	---------------------------------	---

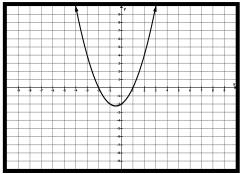
9. The table below contains values for *x* and *y* in a quadratic function.

X	-3	-2	-1	0	1	2	3
y	6	0	-4	-6	-6	-4	0

Which function best represents the relationship between the quantities in the table?


$$A \quad f(x) = x^2 + x - 6$$

$$\mathsf{B} \quad f(x) = -12x - 2$$


- $C \quad f(x) = x^2 x 6$
- $\mathsf{D} \quad f(x) = -x 2$

Solve the problems below by factoring.

10. The polynomial $3x^2 - 11x - 4$ is modeled below using algebraic tiles. What are the solutions to the equation $3x^2 - 11x = 4$?

- 11. Which equation best represents the graph shown.
 - A (x-2)(x+1) = y
 - B (x+2)(x+1) = y
 - C (x+2)(x-1) = y
 - D (x-2)(x-1) = y

- 12. If (2x-2)(2-x)=0, what are all the possible values of x?
 - A 0 only
 - B 1 only
 - C 2 only
 - D 1 and 2 only
 - E 0, 1 and 2
- 13. The area of a rectangular floor is described by the equation w(w-9) = 252 where w is the width of the floor in meters. What is the width of the floor?
- 14. A group of friends try to keep a beanbag from touching the ground without using their hands. Once the beanbag has been kicked, its height can be modeled by $h = -16t^2 + 14t + 2$, where *h* is the height in feet above the ground and *t* is the time in seconds. Find the time it takes the beanbag to reach the ground.
- 15. Can you solve (x-2)(x+3) = 5 by solving x-2=5 and x+3=5? Why or why not?