Practice – Solving Quadratics by Completing the Square

Name _____ Date ____

1. Describe and correct the error in solving $x^2 + 8x = 10$.

$$x^{2} + 8x = 10$$

$$x^{2} + 8x + 16 = 10$$

$$(x + 4)^{2} = 10$$

$$x + 4 = \pm\sqrt{10}$$

$$x = -4 \pm\sqrt{10}$$

Solve the equation by completing the square. Round your solutions to the nearest hundredth, if necessary.

2.
$$x^2 + 14x = 15$$

3.
$$x^2 + 6x = 16$$

4.
$$x^2 - 4x = -2$$

5.
$$m^2 + 16m = -59$$

6.
$$r^2 - 4r - 165 = 0$$

7.
$$4w^2 + 12w = 44$$

8. A painting has an area of $240\,in^2$. If the length of the painting is x inches and the width is (2x+8) inches , solve for the dimensions of the painting to the nearest tenth.

9. Which method is more effective to find the solutions of $3x^2 + x = 25$, completing the square or factoring? Explain.

10. What is the solution set for the quadratic equation $x^2 + 6x = -5$?

B.
$$\{-1, -5\}$$

11. Larry starts to solve $5x^2 + 40x + 15 = 0$ for x by completing the square. What was his error?

$$5x^2 + 40x + 15 = 0$$

$$5(x^2 + 8x) = -15$$

$$5(x^2 + 8x + 16) = -15 + 16$$

What is the correct solution?

12. What are the possible solutions to $x^2 + 4x + 1 = 0$ found by completing the square?

A.
$$x = 1 \text{ or } x = 5$$

B.
$$x = -1$$
 or $x = -5$

C.
$$x = 2 - \sqrt{3}$$
 or $x = 2 + \sqrt{3}$

D.
$$x = -2 - \sqrt{3}$$
 or $x = -2 + \sqrt{3}$